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Abstract. An irreducible antifield BRST quantization method for reducible gauge theories is
proposed. The general formalism is illustrated in the case of the Freedman–Townsend model.

1. Introduction

There are two main approaches to the quantization of gauge theories with open algebras, both
related to the BRST symmetry. The first one is based on the Hamiltonian formalism [1–6],
while the second one relies on the Lagrangian formulation [6–11]. Both methods can be applied
to irreducible, as well as to reducible gauge theories. In the irreducible case the ghosts can
be regarded as one-forms dual to the vector fields associated with the gauge transformations.
In the reducible situation this interpretation fails, so it is necessary to add ghosts of ghosts
together with their antifields. The ghosts of ghosts are required in order to accommodate the
reducibility relations to the cohomology of the (a model of) longitudinal exterior differential
along the gauge orbits [6], while their corresponding antifields ensure the acyclicity of the
Koszul–Tate operator at non-vanishing antighost numbers.

In this paper we propose an irreducible BRST approach to the quantization of on-shell
reducible Lagrangian gauge theories. In consequence, the ghosts of ghosts and their antifields
are absent. Our treatment mainly focuses on: (i) transforming the initial redundant gauge theory
into an irreducible one in a manner that allows the substitution of the BRST quantization of the
reducible system with that of the irreducible theory, and (ii) quantizing the irreducible theory
along the antifield-BRST ideas. We mention that the idea of replacing a reducible system by
an equivalent irreducible one appeared for the first time in the Hamiltonian context [6,12] and
was developed recently in the case of the quantization of Hamiltonian systems with off-shell
reducible first-class constraints [13].

Our paper is structured in five sections. In section 2 we start with anL-stage reducible
theory, and derive an irreducible system by means of constructing an irreducible Koszul–Tate
differential associated with the original reducible one. The irreducible Koszul–Tate complex
is obtained by requiring that all the antighost number two co-cycles become trivial under
an appropriate redefinition of the antighost number two antifields. This request implies the
enlargement of both field and antifield spectra. Section 3 focuses on the derivation of the
irreducible BRST symmetry corresponding to the irreducible theory inferred in section 2,
emphasizing that we can replace the antifield BRST quantization of the reducible theory by
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that of the irreducible system. In section 4 we illustrate our procedure in the case of the
Freedman–Townsend model. Section 5 ends the paper with some conclusions.

2. Derivation of the irreducible theory

2.1. The problem

Our starting point is the gauge invariant Lagrangian action

S0[8α0] =
∫

dDx L0(8
α0, ∂µ8

α0, . . . , ∂µ1 . . . ∂µl8
α0) (1)

subject to the gauge transformations

δε8
α0 = Zα0

α1
εα1 α0 = 1, . . . ,M0 α1 = 1, . . . ,M1 (2)

which are assumed to beL-stage reducible

Zα0
α1
Zα1

α2
= Cα0β0

α2

δS0

δ8β0
α2 = 1, . . . ,M2, (3)

Zα1
α2
Zα2

α3
= Cα1β0

α3

δS0

δ8β0
α3 = 1, . . . ,M3, (4)

...

ZαL−1
αL
ZαLαL+1

= CαL−1β0
αL+1

δS0

δ8β0
αL+1 = 1, . . . ,ML+1 (5)

whereδS0/δ8
β0 = 0 stand for the field equations. For the sake of notational simplicity we

take the fields to be bosonic. The subsequent discussion can be straightforwardly extended to
fermions modulo the introduction of some appropriate phase factors.

The reducible BRST symmetry corresponding to the above reducible theory,sR =
δR + σR + · · ·, contains two basic differentials. The first one,δR, named the Koszul–Tate
differential, realizes an homological resolution of smooth functions defined on the stationary
surface of field equations, while the second one,σR, represents a model of longitudinal
derivative along the gauge orbits and accounts for the gauge invariances. For first-stage
reducible theories, the construction ofδR requires the introduction of the antifields8∗α0

, η∗α1

andC∗α2
, with the Grassmann parities (ε) and antighost numbers (antigh) given by

ε(8∗α0
) = 1 ε(η∗α1

) = 0 ε(C∗α2
) = 1 (6)

antigh(8∗α0
) = 1 antigh(η∗α1

) = 2 antigh(C∗α2
) = 3. (7)

The standard definitions ofδR are

δR8
α0 = 0 δR8

∗
α0
= − δS0

δ8α0
(8)

δRη
∗
α1
= Zα0

α1
8∗α0

(9)

δRC
∗
α2
= −Zα1

α2
η∗α1
− 1

2C
α0β0
α2

8∗α0
8∗β0

. (10)

The antifieldsC∗α2
are necessary in order to kill the antighost number two non-trivial co-cycles

να2 = Zα1
α2
η∗α1

+ 1
2C

α0β0
α2

8∗α0
8∗β0

(11)

resulting from (9) via the reducibility relations (3). In the case of two-stage reducible theories,
apart from the above antifield spectrum, one should add the antifieldsC∗α3

, with ε(C∗α3
) = 0,

antigh(C∗α3
) = 4, in order to kill the existing antighost number three co-cycles yielded by

(10) if one takes into account the reducibility equations. In general, for anL-stage reducible
system the antifield spectrum will contain the variables8∗α0

, η∗α1
and(C∗αk )k=2,...,L+1, where
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ε(C∗αk ) = k + 1 mod 2, antigh(C∗αk ) = k + 1, that are introduced in order to prevent the
appearance of any non-trivial co-cycle at positive antighost numbers.

The problem to be investigated in this section is the derivation of an irreducible theory
associated with a startingL-stage reducible gauge system. In this light, our main idea is
to redefine the antifieldsη∗α1

in such a way that all the non-trivial co-cycles (11) become
trivial. The triviality of these co-cycles further implies that the antifields(C∗αk )k=2,...,L+1 are no
longer necessary as there are also no non-trivial co-cycles at antighost numbers greater that
two. The implementation of this idea leads to an irreducible gauge theory that possesses the
same physical observables as the original reducible one. In order to clarify our irreducible
mechanism, we gradually investigate the casesL = 1, 2, and then generalize the results to an
arbitraryL.

2.2. The caseL = 1

Here we start with equations (8)–(10) and the reducibility relations (3). In the light of the idea
exposed above, we redefine the antifieldsη∗α1

as

η∗α1
→ η̃∗α1

= η∗α1
− Zβ1

β2
D̄β2

α2
A α2
α1
η∗β1
− 1

2C
α0β0
β2

D̄β2
α2
A α2
α1
8∗α0

8∗β0
(12)

whereD̄β2
α2

is the inverse ofDβ2
α2
= Zα1

α2
A β2
α1

andA β2
α1

are some functions that may involve
the fields8α0, taken such that rank(Dβ2

α2
) = M2. The next step is to replace (9) with

δη̃∗α1
= Zα0

α1
8∗α0

. (13)

Equations (13) lead to some co-cycles of the type (11), i.e.,

ν̃α2 = Zα1
α2
η̃∗α1

+ 1
2C

α0β0
α2

8∗α0
8∗β0

(14)

that are trivial by virtue of (12). Indeed, from (12) we find

Zα1
α2
η̃∗α1
= − 1

2C
α0β0
α2

8∗α0
8∗β0

(15)

henceν̃α2 ≡ 0. In consequence, equations (13) do not imply any non-trivial co-cycles at
antighost number two, so the antifieldsC∗α2

are no longer necessary. Thus, formula (13) helps
us to derive an irreducible theory. This is the reason for changing the notationδR into δ in
(13). In order to infer the irreducible gauge transformations corresponding to the irreducible
theory we introduce the fields8α2 and require that their antifields, denoted by8∗α2

, are the
non-vanishing solutions to the equations

D
α2
β2
8∗α2
= δ(Zα1

β2
η∗α1

+ 1
2C

α0β0
β2

8∗α0
8∗β0

). (16)

The8∗α2
are fermionic and possess antighost number one. Due to the invertibility ofD

α2
β2

,
the non-vanishing solutions for8∗α2

enforce the irreducibility because equations (16) possess
non-vanishing solutions if and only if

δ(Z
α1
β2
η∗α1

+ 1
2C

α0β0
β2

8∗α0
8∗β0

) 6= 0 (17)

hence if and only if (11) are not co-cycles. In the meantime, the invertibility ofD
α2
β2

emphasizes
via (16) that the antifields8∗α2

areδ-exact, which then ensures by virtue of the nilpotency ofδ

that

δ8∗α2
= 0. (18)

With the help of equations (12), (13) and (16) we arrive at

δη∗α1
= Zα0

α1
8∗α0

+A α2
α1
8∗α2

. (19)

By maintaining the definitions from the reducible case

δ8α0 = 0 δ8∗α0
= − δS0

δ8α0
(20)
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and by setting

δ8α2 = 0 (21)

the equations (18)–(21) completely define the irreducible Koszul–Tate complex corresponding
to an irreducible theory associated with the original reducible one. At this point we can deduce
the action of the irreducible theorỹS0[8α0,8α2], as well as its gauge invariances. On the one
hand, from the standard BRST prescription

δ8∗α2
= − δS̃0

δ8α2
(22)

compared with (18), we find that

S̃0[8α0,8α2] = S0[8α0]. (23)

On the other hand, equations (19) lead to the gauge transformations of the irreducible theory
in the form

δε8
α0 = Zα0

α1
εα1 δε8

α2 = A α2
α1
εα1. (24)

Thus, we can conclude that the irreducible theory is based on the original action (see (23))
and the gauge transformations (24). From (23) it is clear that the fields8α2 are purely gauge,
such that the physical observables of the irreducible system coincide with those of the original
reducible theory. The equivalence between the physical observables represents a desirable
feature of our irreducible method, which can be gained if we set all the antifields corresponding
to the new introduced fields to beδ-closed. On the other hand, as these antifields should not
represent non-trivial co-cycles, it is necessary to construct the theory such that they are also
δ-exact. Anticipating a bit, we remark that for higher-order reducible theories it is necessary
to further enlarge the field and antifield spectra in order to enforce the above-discussedδ-
exactness.

2.3. The caseL = 2

In this situation we start with the definitions ofδ given by (18)–(21). However, in addition
we have to take into account the second-stage reducibility relations (4). On behalf of these
supplementary reducibility relations, we find that the matrixD

α2
β2

is no longer invertible, as it
displays some on-shell null vectors, namely,

D
α2
β2
Z
β2
β3
= A α2

β1
C
β1β0
β3

δS0

δ8β0
≈ 0 (25)

where the weak equality ‘≈’ means an equality valid when the field equations hold. Thus,
in the case of two-stage reducible theories we will consider thatA α2

α1
are chosen such that

rank(Dα2
β2
) ≈ M2 −M3. Multiplying (19) byZα1

β2
, we obtain

δ(Z
α1
β2
η∗α1

+ 1
2C

α0β0
β2

8∗α0
8∗β0

) = Dα2
β2
8∗α2

(26)

that together with (25) and (18)–(21) lead to the antighost number two co-cycles

να3 = Zα2
α3
Zα1

α2
η∗α1

+ 1
2C

α0β0
α2

Zα2
α3
8∗α0

8∗β0
+A α2

β1
Cβ1β0
α3

8∗α2
8∗β0

(27)

which are found trivial,να3 = δ(−Cβ1β0
α3

8∗β0
η∗β1
), so there are actually no non-trivial co-cycles

at antighost number two. In this way, the only problem that remains to be solved is theδ-
exactness of8∗α2

, which will further ensure that there are no non-trivial co-cycles at antighost
number one. Equations (25) allow us to representD

α2
β2

in the form

D
α2
β2
= δα2

β2
− Zα2

α3
D̄
α3
β3
A

β3
β2

+A α2
β1
Cβ1β0
α3

D̄
α3
β3
A

β3
β2

δS0

δ8β0
(28)
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whereD̄α3
β3

is the inverse ofDα3
β3
= Zβ2

β3
A

α3
β2

andA α3
β2

are some functions that may involve
the fields8α0, chosen to satisfy rank(Dα3

β3
) = M3. Inserting (28) in (26) we arrive at

δ(Z
α1
β2
η∗α1

+ 1
2C

α0β0
β2

8∗α0
8∗β0

+A α2
β1
Cβ1β0
α3

D̄
α3
β3
A

β3
β2
8∗α2

8∗β0
) = 8∗β2

− Zα2
α3
D̄
α3
β3
A

β3
β2
8∗α2

(29)

which show that8∗β2
are notδ-exact in the context of the present antifield spectrum. In order

to restore theδ-exactness of8∗β2
we introduce the bosonic antighost number two antifieldsη∗α3

and define

δη∗α3
= Zα2

α3
8∗α2

. (30)

Introducing definitions (30) in equations (29) we deduce that

8∗β2
= δ(Zα1

β2
η∗α1

+ 1
2C

α0β0
β2

8∗α0
8∗β0

+A α2
β1
Cβ1β0
α3

D̄
α3
β3
A

β3
β2
8∗α2

8∗β0
+ D̄α3

β3
A

β3
β2
η∗α3
) (31)

which show that8∗β2
can be madeδ-exact. Replacing (31) in (19) we get thatZα0

α1
8∗α0

are also
trivial co-cycles. In conclusion, in the caseL = 2 the equations (18)–(21) and (30) completely
define the irreducible Koszul–Tate complex. Thus, the irreducible theory is also based on
action (23), subject to the gauge transformations

δε8
α0 = Zα0

α1
εα1 δε8

α2 = A α2
α1
εα1 +Zα2

α3
εα3 (32)

whereεα3 are some additional gauge parameters due to (30).
From the above analysis forL = 1, 2 it seems that some problems linked with locality

appear. Indeed, the matrices̄Dα2
β2

present in (12) and (13), and also the solutions of
equations (16) are, in general, non-local. However, the non-locality involved with (16)
compensates, in a certain way, for that from equations (13), such that the irreducible gauge
transformations (24) are local. A similar observation can be made with respect to the case
L = 2. In conclusion, the non-locality present within the intermediate steps of the construction
of the irreducible Koszul–Tate complex plays no role in the irreducible theory. Moreover, the
non-locality mentioned in the above brings no contribution when comparing the results inferred
within the irreducible and reducible procedures (see section 4).

2.4. Generalization to arbitraryL

At this point we can generalize the previous results to an arbitraryL in a simple manner.
Acting in a way that ensures on the one hand the nilpotency and acyclicity of the Koszul–Tate
differential and on the other hand its irreducibility, we enlarge the field and antifield spectra,
and construct the Koszul–Tate complex through

δ8α0 = 0 δ8α2k = 0 k = 1, . . . , a (33)

δ8∗α0
= − δS0

δ8α0
δ8∗α2k

= 0 k = 1, . . . , a (34)

δη∗α2k+1
= Zα2k

α2k+1
8∗α2k

+A α2k+2
α2k+1

8∗α2k+2
k = 0, . . . , b (35)

where the8α2k are bosonic with antighost number zero, the8∗α2k
are fermionic, of antighost

number one, and theη∗α2k+1
are bosonic with antighost number two. In the above, the notations

a andb mean

a =


L

2
for L even

L + 1

2
for L odd

b =


L

2
for L even

L− 1

2
for L odd.

(36)

From (33)–(35) we get an irreducible theory described by the action

S̃0[8α0, (8α2k )k=1,...,a] = S0[8α0] (37)
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subject to the gauge transformations

δε8
α0 = Zα0

α1
εα1 (38)

δε8
α2 = A α2

α1
εα1 +Zα2

α3
εα3 (39)

...

δε8
α2k = A α2k

α2k−1
εα2k−1 +Zα2k

α2k+1
εα2k+1 (40)

...

δε8
α2a =

{
A αL
αL−1

εαL−1 +ZαLαL+1
εαL+1 for L even

A αL+1
αL

εαL for L odd.
(41)

The functionsA α2k
α2k−1

may depend on the fields8α0 and are chosen to satisfy

rank(Dβk
αk
) ≈

L+1∑
i=k
(−)k+iMi k = 1, . . . , L (42)

rank(DβL+1
αL+1
) = ML+1 (43)

whereDβk
αk
= A βk

αk−1
Z
αk−1
αk . We remark that the choice of the functionsA αk

αk−1
is not unique.

Moreover, for a definite choice ofA αk
αk−1

, equations (42) and (43) are unaffected if we modify
the functionsA αk

αk−1
as

A αk
αk−1
→ A αk

αk−1
+µαkβk−2

Zβk−2
αk−1

(44)

so that these functions carry some ambiguities. It is known that the reducibility functionsZ
αk−1
αk

also display some ambiguities [6]. Throughout the paper we use the conventionsf αk = 0 if
k < 0 ork > L + 1.

3. The irreducible BRST symmetry for reducible gauge theories

The derivation of the irreducible Koszul–Tate complex from the above section suggests the
possibility to construct an irreducible BRST symmetry associated with the reducible one.
This is why, in this section, we point out the derivation of the irreducible BRST symmetry
corresponding to the irreducible theory derived within the previous section and show that we
can replace the BRST quantization of the original reducible system by that of the irreducible
theory. In view of this, we remark that by organizing the fields(8α0,8α2k ), as well as the
gauge parameters(εα1, εα2k+1), into some column vectors8A0 andεA1 respectively, the gauge
transformations (38)–(41) can be written in a condensed form asδε8

A0 = Z
A0
A1
εA1, where

Z
A0
A1

is the appropriate matrix of the gauge generators from (38)–(41) (includingA αk
αk−1

and

Z
αk−1
αk ). An essential requirement that must be satisfied by the new generatorsZ

A0
A1

is their
completeness, i.e.,

Z
B0
A1

δZ
A0
B1

δ8B0
− ZB0

B1

δZ
A0
A1

δ8B0
≈ CC1

A1B1
Z
A0
C1
. (45)

As in general the completeness of the gauge generators depends on the choice ofA αk
αk−1

and also
on the reducibility functions of the original theory, in the following we consider only those
theories for which (45) hold.

In order to build the irreducible antifield BRST symmetry it is necessary to construct the
irreducible Koszul–Tate differential and the irreducible longitudinal exterior derivative along
the gauge orbits. The Koszul–Tate differential was constructed in section 2 (see (33)–(35)).
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The construction of the longitudinal exterior differential along the gauge orbits, D, follows the
general irreducible BRST line [6]. By introducing the minimal ghosts

ηA1 =
(
ηα1

ηα2k+1

)
(46)

of pure ghost number one, the definitions

D8A0 = ZA0
A1
ηA1 DηA1 = 1

2C
A1
B1C1

ηB1ηC1 (47)

together with (45) ensure the weak nilpotency of D without adding any ghosts of ghosts. Under
these circumstances, the homological perturbation theory [14–17] guarantees the existence of
the irreducible BRST symmetry,sI .

In what follows we show that it is permissible to substitute the BRST quantization of
the reducible theory by that of the irreducible system derived previously. It is obvious
that the two theories possess the same classical observables as the fields(8α2k )k=1,...,a do
not effectively appear in the action of the irreducible system, hence they are purely gauge
variables. In consequence, the observables of the irreducible theory actually do not depend on
the newly added fields, therefore they satisfy the equationsδF

δ8α2k ≈ 0. Thus, the observables
corresponding to the irreducible system,F , involve only the fields8α0 and should satisfy
just the equationsδF

δ8α0Z
α0
α1
≈ 0, which are merely the equations that must be checked by

the observables of the reducible theory. As the observables of the irreducible and reducible
theories coincide, it follows that the zeroth-order cohomological groups of the irreducible
and reducible BRST operators are isomorphic,H 0(sI ) = H 0(sR). Thus, the irreducible and
reducible theories are equivalent from the BRST point of view, i.e., from the point of view of the
fundamental equations underlying this formalism,s2 = 0,H 0(s) = {physical observables}.
All these considerations lead to the conclusion that we can replace the BRST quantization of
the reducible theory by that of the irreducible system derived previously.

With all the above ingredients at hand, the BRST quantization of the irreducible theory goes
along the standard manner. If one defines the canonical action ofsI throughsIF = (F, SI ),
with ( , ) the antibracket andSI the canonical generator of the irreducible BRST symmetry,
the nilpotency ofsI is expressed by means of the master equation

(SI , SI ) = 0. (48)

The existence of the solution to the master equation is guaranteed via the acyclicity of the
Koszul–Tate operator at positive antighost numbers. In order to solve the master equation

we takeSI =
∑∞

k=0

(k)

S , with antigh
(k)

S= k, gh
(k)

S= 0 and approach the master equation (48)
antighost by the antighost level, at the same time requiring the boundary conditions

(0)
S= S0

(1)
S= 8∗α0

Zα0
α1
ηα1 +

a∑
k=1

8∗α2k
(A α2k

α2k−1
ηα2k−1 +Zα2k

α2k+1
ηα2k+1). (49)

The ambiguities signalized at the end of section 2 in connection with the functionsA αk
αk−1

andZαk−1
αk induce some ambiguities at the level of the solution to the master equation,SI .

The ambiguity inSI is completely exhausted by the possibility of performing a canonical
transformation in the antibracket [6], so the solution is unique up to such a canonical
transformation. In order to fix the gauge, we add the non-minimal variables(Bα2k+1, B∗α2k+1

)

and (η̄α2k+1, η̄∗α2k+1
), with k = 0, . . . , b, such that we obtain the non-minimal solutionS =

SI +
∑b

k=0 η̄
∗
α2k+1

Bα2k+1. A class of appropriate gauge-fixing conditions is given by

χβ2k+1 ≡ Zβ2k
β2k+1

fβ2k (8
β2k ) +A β2k+2

β2k+1
gβ2k+2(8

β2k+2) = 0 (50)
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where

fβ2k (8
β2k ) 6= Zβ2k−1

β2k
ρβ2k−1 (51)

gβ2k+2(8
β2k+2) 6= A β2k+3

β2k+2
γβ2k+3(8

β2k+2) (52)

for some functionsρβ2k−1 andγβ2k+3. On account of (51) and (52) it is easy to show that the gauge
conditions (50) are irreducible even ifA βk+1

βk
A

βk+2
βk+1
≈ 0. Thus, a possible class of gauge-fixing

fermions can be written as

ψ =
b∑
k=0

η̄β2k+1χβ2k+1 (53)

with χβ2k+1 given in (50). Eliminating the antifields fromS with the help of (53), we deduce
the gauge-fixed action,Sψ , in the standard manner. The gauge-fixing fermion (53) involves
(Dirac) δ-functions from the gauge conditions. It is understood that one can shift the gauge
conditions byBβ2k+1 in order to reach some Gaussian average representations. Because the
gauge conditions are irreducible, the gauge-fixed action displays no residual gauge invariances
with respect to the non-minimal sector. Of course, one is free to take any consistent irreducible
gauge conditions instead of (50). In conclusion, the path integral of the original reducible
theory, quantized accordingly our irreducible procedure, reads as

Zψ =
∫

D8A0DηA1Dη̄A1DBA1 exp iSψ. (54)

Once again we remark that our procedure does not involve ghosts for ghosts, i.e., (54) contains
only ghost number one ghost fields. This completes the description of our irreducible treatment
for reducible gauge theories.

At this stage, we can emphasize in a clearer manner the role of the newly added fields,
8α2k , with k > 0. In our formalism these fields play a double role, namely, (i) they implement
the irreducibility through the gauge transformations (39)–(41), and (ii) they are involved with
the irreducible gauge-fixing procedure. In this light, these fields are more relevant than the
corresponding non-minimal ones appearing during the gauge-fixing process from the reducible
case because, while the newly introduced fields prevent the appearance of the reducibility, the
non-minimal fields (in the reducible situation) are mainly an effect of the reducibility, and,
consequently, are more passive.

4. Example: the Freedman–Townsend model

Let us apply the prior investigated irreducible approach in the case of the Freedman–Townsend
model. We start with the Lagrangian action of the non-Abelian Freedman–Townsend theory
[18]

SL0 [Baµν, A
a
µ] = 1

2

∫
d4x (−Bµνa F aµν +AaµA

µ
a ) (55)

whereBaµν stands for an antisymmetric tensor field, and the field strength,Faµν , is defined
by Faµν = ∂µAaν − ∂νAaµ − f abcAbµAcν . Action (55) is invariant under the first-stage on-shell
reducible gauge transformations

δεB
a
µν = εµνλρ(Dλ)abε

ρb δεA
a
µ = 0 (56)

with (Dλ)ab = δab∂λ + f abcA
λc. The field equations deriving from (55) are

δSL0

δBaµν
≡ −1

2
Fµνa = 0

δSL0

δA
µ
a

≡ Aaµ + (Dλ)abB
b
λµ = 0. (57)
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The non-vanishing gauge generators of (56),(Zµνρ)
a
b = εµνλρ(D

λ)ab, admit the first-order
on-shell reducibility relations

(Zµνρ)
a
b(Z

ρ)bc = −εµνλρf acd
δSL0

δBλρd
(58)

where the first-stage reducibility functions are expressed by(Zρ)bc = (Dρ)bc.
The equivalencies between the general background exposed above and the model under

consideration read as8α0 ↔ Baµν , ε
α1 ↔ ερb, Zα0

α1
↔ εµνλρ(D

λ)ab, Z
α1
α2
↔ (Dρ)bc, such

that α0 ↔ (a, µν), α1 ↔ (b, ρ), α2 ↔ c. The fieldsAaµ were omitted as their gauge
transformations identically vanish, hence they do not contribute to the irreducible treatment.
In agreement with our construction, we introduce the fields8α2, which in this case are some
scalar fieldsϕa. We takeA α2

α1
to be(Dµ)

a
b, hence the concrete form of (39) is

δεϕ
a = (Dµ)

a
bε
µb. (59)

It is easy to see that the new gauge transformations, namely, (56) and (59) form a complete
set, the gauge algebra remaining Abelian. This guarantees the possibility of an appropriate
construction of the longitudinal differential along the gauge orbits. With these elements at
hand, we pass to the derivation of the gauge-fixed action of the irreducible system associated
with the Freedman–Townsend model. The minimal ghost spectrum contains the fermionic
ghost number one ghostsηα1 = (ηµb), while the minimal antifield spectrum is organized as
8∗α0
= (B

∗µν
a , ϕ∗a ) andη∗α1

= (η∗ρb), the former antifields having antighost number one and
Grassmann parity one, while the latter possess antighost number two and Grassmann parity
zero. With the above spectra at hand, the concrete form of the minimal solution to the master
equation is

Smin = SL0 +
∫

d4x (B∗µνa εµνλρ(D
λ)abη

ρb + ϕ∗a (Dµ)
a
bη
µb). (60)

Next, we focus on the gauge-fixing process. We take the gauge conditions as in (50), i.e.,

χρb ≡ − 1
2εµνλρ(D

λ)cbB
µν
c + (Dρ)

c
bϕc = 0. (61)

The prior gauge conditions are irreducible and are enforced via a non-minimal sector of the
type (η̄µa, bµa) plus the corresponding antifields. The ghost numbers (gh) and Grassmann
parities (ε) of the non-minimal fields read as gh(η̄µa) = −1, ε(η̄µa) = 1, gh (bµa) = 0,
ε(bµa) = 0. The features of their antifields follow from the standard BRST rules. Thus, the
non-minimal solution to the master equation is expressed throughS = Smin +

∫
d4x η̄∗µab

µa.
Taking the gauge-fixing fermionψ = ∫

d4x χρbη̄
ρb, and eliminating the antifields in the

standard manner, we arrive at the gauge-fixed action

Sψ = SL0 +
∫

d4x (− 1
2((D[λ)

c
aη̄ρ]c)(D

[λ)abη
ρ]b − ((Dρ)caη̄ρc)((Dµ)

a
bη
µb) + χρbb

ρb) (62)

with χρb given by (61). The symbol [λρ] signifies the antisymmetry with respect to the Lorentz
indices between brackets. We remark that the gauge-fixed action resulting from our irreducible
procedure is Lorentz covariant.

Let us now investigate an Abelian version of Freedman–Townsend theory that is second-
stage reducible. We start with the action

SL0 [Bµνρa , Aaµ] = 1

2

∫
d5x

(
1

3!
εµνλρσB

µνλ
a F ρσa +AaµA

µ
a

)
(63)

whereBµνρa stand for an Abelian three-form, whileFρσa is now Abelian, i.e.,Fρσa = ∂ [ρAσ ]a.
The gauge transformations of (63) are

δεB
µνρ
a = ∂ [µενρ]

a δεA
a
µ = 0 (64)
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and are off-shell second-stage reducible, with the first and second stage reducibility functions
respectively given by

Z
αβa

γ b = δ a
b ∂

[αδβ]
γ Zγbc = δ b

c ∂
γ . (65)

According to the general theory, we add the fieldsBµa that play the role of8α2, the gauge
parametersεa, which are the analogues ofεα3, and takeA α2

α1
to be the transposed ofZαβaγ b .

Therefore, the gauge transformations ofB
µ
a take the form (see (39))

δεB
µ
a = 2∂νε

νµ
a + ∂µεa. (66)

The non-minimal solution to the master equation is expressed by

S = SL0 [Bµνρa , Aaµ] +
∫

d5x(B∗aµνρ∂
[µηνρ]

a +B∗aµ (2∂νη
νµ
a + ∂µηa) + η̄∗µνa baµν + η̄∗ab

a). (67)

In the last formula,(ηµνa , ηa)denote the fermionic ghost number one ghosts,(B∗aµνρ, B
∗a
µ )are the

fermionic ghost number minus one antifields of the corresponding fields, while the remaining
fields form the non-minimal sector. If we take some gauge conditions as in (50) by means of
the gauge-fixing fermion

K =
∫

d5x(η̄aµν(∂ρB
ρµν
a + 1

2∂
[µBν]

a ) + η̄a∂µB
µ
a ) (68)

we arrive at the gauge-fixed action

SK = SL0 [Bµνρa , Aaµ] +
∫

d5x(η̄aµν � ηµνa + η̄a � ηa + baµν(∂ρB
ρµν
a + 1

2∂
[µBν]

a ) + ba∂µB
µ
a )

(69)

where� = ∂λ∂
λ. It is easy to see that the gauge-fixed action (69) has no residual gauge

invariances.
Finally, we make the comparison between our approach and the reducible BRST treatment

in the case of the investigated models. The gauge-fixed actions for the former and latter model
within the reducible treatment are respectively given by

S ′ψ ′ = SL0 [Baµν, A
a
µ] +

∫
d4x (− 1

2((D[µ)
c
aη̄ν]c)(D

[µ)abη
ν]b − ((Dµ)

c
aη̄
µ
c )((D

ν)abη
b
ν)

−((Dµ)caC̄c)(Dµ)
a
bC

b + 1
8ε
µνλρf abc((D[µ)

d
aη̄ν]d)((D[λ)

c
eη̄
e
ρ])C

b

+(− 1
2ε
µνλρ(Dν)

b
aBλρb + (Dµ)baη̄b)b

a
µ) (70)

S ′K ′ = SL0 [Bµνρa , Aaµ] +
∫

d5x (η̄aµν � ηµνa + η̄a � ηa + baµν(∂ρB
ρµν
a + 1

2∂
[µη̄ν]

a )

+ba∂µη̄
µ
a − ∂[µη̄

′a
ν]∂

[µCν]
a − (∂µη̄′a)(∂µCa)− (∂µη̄′aµ )b′a + (∂µC

µ
a )b
′′a). (71)

Apart from the spectra in the irreducible setting, in (70) there appear the additional variables
Ca, that are the bosonic ghost number two ghosts, plus the non-minimal fields(C̄a, η̄a). Along
the same line, but with respect to the gauge-fixed action (71), the fieldsC

µ
a andCa stand for

the ghost number two and three ghosts, respectively, while(η̄
µ
a , η̄

′a
µ , η̄

′a, b′a, b
′′a) belong to the

non-minimal sector. By performing the identifications

η̄a ↔ ϕa (72)

respectively,

η̄µa ↔ Bµa (73)
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between the variables involved with the gauge-fixed actions derived within the irreducible
and reducible approaches, the difference between the gauge-fixed actions respectively
corresponding to the two models are

S ′ψ ′ − Sψ =
∫

d4x (−((Dµ)caC̄c)(Dµ)
a
bC

b + 1
8ε
µνλρf abc((D[µ)

d
aη̄ν]d)((D[λ)

c
eη̄
e
ρ])C

b)

(74)

S ′K ′ − SK =
∫

d5x (−∂[µη̄
′a
ν]∂

[µCν]
a − (∂µη̄′a)(∂µCa)− (∂µη̄′aµ )b′a + (∂µC

µ
a )b
′′a). (75)

We remark that the differences between the gauge-fixed actions are proportional to the ghosts
of ghost number greater than one, which are some essential compounds of the reducible BRST
quantization. Although identified at the level of the gauge-fixed actions, the fields from (72) and
(73) play different roles within the two formalisms. More precisely, the presence of the fieldsϕa

andBµa prevents the reducibility, while thēηa, andη̄µa respectively, represent an effect of the re-
ducibility. In fact, the fieldsϕa andBµa are introduced in order to forbid the existence of the zero
modes. In consequence, all the ingredients connected with the zero modes, e.g., the ghosts of
ghosts or the non-minimal pyramid, are discarded from the irreducible setting. In this light, we
suggestively call the fieldsϕa andBµa ‘antimodes’. This completes our irreducible treatment.

5. Conclusion

To conclude, in this paper we expose an alternative method of quantizing reducible gauge
theories without introducing ghosts of ghosts or their antifields. The cornerstone of our
approach is given by the derivation of a Koszul–Tate complex underlying an irreducible gauge
theory. As the irreducible gauge system possesses the same physical observables as the original
reducible theory, it is legitimate to substitute the BRST quantization of the initial reducible
system by that of the irreducible one from the point of view of the main equations underlying the
BRST formalism. Then, the general line of the antifield BRST quantization for the irreducible
theory is elucidated, some possible gauge conditions being outlined. The general approach is
finally exemplified in the case of the Freedman–Townsend model.
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